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Diastereoselective 7-Complexation: Reaction of Planar-chiral Cyclopentadienyl-Ruthenium
Complexes with Prochiral Arenes
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The reaction of (trisubstituted cyclopentadienyl)tris-
(acetonitrile)ruthenium complexes, [Cp'Ru(CH3CN)3][PFg],
with prochiral trisubstituted arenes gave planar-chiral
[Cp'Ru(arene)][PF¢] complexes with a diastereoselectivity up to
46% d. e.

Cyclopentadienyl-ruthenium complex-catalyzed
condensation reactions between alkynes and alkenes are
currently the subject of intense interest in terms of new methods
for organic syntheses.! In most of the reported reactions, non-
substituted cyclopentadienyl- or pentamethylcyclopentadienyl-
ruthenium complexes have been used as a catalyst. Recently,
we have reported the synthesis of novel (mS-trisubstituted
cyclopentadienyl)ruthenium complexes [Cp'Ru(CH3CN)3][PF¢]
having a planar chirality? as well as the catalysis in the
cyclopropanation reaction of norbornene with propargyl
alcohol.3 In the course of our study, we have examined the
potentials of the planar-chiral cationic complexes
[Cp'Ru(CH3CN)31+ for enantioselective reactions and found a
through-space chiral transfer in the reaction of the complexes.
Here we report diastereoselective m-complexation of planar-
chiral cyclopentadienyl ruthenium species toward prochiral
trisubstituted arenes.

In metal-catalyzed asymmetric reactions, enantioselective
nm-complexation of unsaturated hydrocarbon substrates on a
chiral metal center is a key step. Several studies on the
stereoselective m-complexation of unsaturated hydrocarbons
have appeared, however, well-characterized examples of this
process are still rare.4
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Planar-chiral [Cp'Ru(CH3CN)3][PFg] 1 was prepared by
the reported method (Scheme 1).2 It is well-known that cationic
[CpRu(CH3CN)3]* complexes undergo thermal replacement of
the acetonitrile ligands by various arenes to give

[CpRu(arene)]+.2: 5 In order to obtain some information on the
diastereoselective m-complexation of the planar-chiral Cp'Ru
moiety to prochiral arenes, the reactions of complex la with
some kinds of prochiral arenes were carried out. The reaction
of prochiral arenes with planar-chiral Cp'Ru complexes would
produce [Cp'Ru(arene)]* complexes which contain two planar-
chiral parts; one is the Cp'-Ru part and the other is the arene-Ru
one. Thus complex la was allowed to react with various arenes
in dichloromethane at room temperature under nitrogen
atmosphere for 12 h. Purification by column chromatography
on alumina gave [Cp'Ru(arene)]PFg 2 as a mixture of two
enantiomer pairs, (SS, RR) and (SR, RS).6 In the reaction of la
with 2-t-butyl-5-methylanisole, asymmetric induction was
observed, though it was not detected with arenes such as methyl
2-methoxybenzoate and a-tetralon.

Then, the investigation of asymmetric induction by planar-
chirality on the Cp'Ru moiety was started with using 2-t-butyl-5-
methylanisole as a prochiral arene. Results are summarized in
Table 1. Complexes 1a, 1d, and 1f showed almost the same

Table 1. Reaction of complex 1 with 2-t-butyl-5-methylanisole

Complex R! - R2 R3 Yield of D.e. of
2/% 2 2/ %D

la Me Me Et 98 37

1b Me Me Cyc¢ 75 46

1c Me OEt Et 43 26

1d Ph Me Et 98 38

le Ph OEt Et 52 22

1f t-Bu Me Et 64 37

1g t-Bu Me Cy 39 19

2 Isolated yield. b Determined by HPLC. ¢ Cy = cyclohexyl.

diastereoselectivity, implying that the bulkiness of substituent
R! at 4-position is not influential in the asymmetric induction.
Complexes 1c and le bearing an ethoxy group at 2-position gave
product 2 in moderate yield with a lower selectivity than 1a.
Cyclohexyl ester derivative 1b afforded product 2b with the
highest selectivity, while cyclohexyl ester analogue 1g having a
t-Bu group at 4-position of the Cp' ligand showed a lower
selectivity than 1b, suggesting that the bulkiness of the
substituent at I-position plays an important role for the
asymmetric reaction.

The molecular structure of product 2 must aid us in
understanding the mechanism of through-space chiral transfer
found in the present m-complexation reaction. The fractional
recrystalization of 2g from ethanol gave the major diastereomer
as a single crystal. The molecular structure of the major
diastereomer was established by x-ray crystallographic analysis’
and the stereochemistry was determined to be a pair of RS and
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SR, indicating that the planar chirality S on the Cp'-Ru part
induces the planar-chirality R on the arene-Ru part in the ligand
exchange reaction. (Figure 1) The mechanism of the ligand
exchange reaction of [CpRu(CH3CN)3]PFg with arenes was
investigated in detail by Mann et. al. (eq. 1)8 On the basis
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Figure 1. Molecular structure of the major diastereomer of 2g.
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of their proposed mechanism, the reaction proceeds step by step
and the last step (from 4 to 2 in eq. 1) is irreversible in CH>Cly
under thermal reaction conditions, In addition, they concluded
that hapticity change from 114 in 4 to 16 in 2 is a rate-
determining step. Therefore the recognition of prochiral plane
is thermally controlled by the planar-chiral Cp'-Ru moiety on the
formation of the n#4 intermediate and the structure of the n*
intermediate must be important for understanding the
mechanism of the prochiral-plane recognition. On the basis of
the steric repulsion between the Cp' ligand and 2-t-butyl-5-
methylanisole, the CpRuL moiety may coordinate by using 2, 3,
4, and 5 positions on 2-t-butyl-5-methylanisole to make 4
intermediate. (eq. 2) Then four structural isomers may be
considered for the m4-arene-Ru intermediate. (Figure 2)
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Isomers 4a and 4b produce a diastereomer having a pair of SR
and RS stereochemistry. The thermal stability of m4-
intermediates decreases in the order of 4a >4c =~ 4d > 4b
depending on sterical repulsion between the substituentes on Cp'
and m4-arene ligands. Consequently, we propose that the
present diastereoselective ligand exchange reaction
preferentially passes through intermediate 4a. According to the
proposed mechanism described above, complex 1 bearing a
large substituent on an ester group must exhibit a high
diastereoselectivity on the m-complexation reaction of prochiral
arenes. In fact, the reaction of cyclohexyl derivatives 1b shows
46% d.e.

The work described here demonstrates the first effective
transfer of a planar chirality from Cp'-Ru part to the chirality of
arene-Ru complexation. The chiral recognition property of
cationic planar-chiral [CpRu(CH3CN)3]* complexes must be
useful for the design of enantioselective catalytic reactions.
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